fig1

Recent updates on the role of extracellular vesicles in the pathogenesis of allergic asthma

Figure 1. Schematic of extracellular vesicle (EV)-mediated signaling in the lung microenvironment during allergic asthma. A complex interaction occurs between different immune cell-secreted EVs and other target cells (recipient cells) that play a crucial role in the pathophysiology of allergic asthma. Secreted EVs consist of specific biomolecules (e.g., proteins, miRNAs) or organelles (e.g., mitochondria) that cause a phenotypic change in target cells resulting in altered asthmatic lung phenotypes (augmented lung inflammation, airway hyperresponsiveness, and remodeling). EVs have been shown to regulate tissue homeostasis during a normal state and affect target cells leading to the pathobiology of chronic airway disease during a diseased state. EVs released by different immune inflammatory cells (dendritic cells, Th2, Th17, and Tregs, B cells, mast cells, eosinophils, neutrophils, etc.) were represented by an appropriate color of the parent cell and the key biomolecules present in EVs affects the target cells. The directionality of EV-induced changes in recipient cells was indicated using an arrow. EVs that induce cell differentiation or maturation are indicated by a positive symbol (+) and if they inhibit cell maturation or anergy is indicated by a negative symbol (-). This schematic was prepared from SMART (Servier Medical Art), licensed under a Creative Common Attribution 3.0 Generic License. http://smart.servier.com/.

Extracellular Vesicles and Circulating Nucleic Acids
ISSN 2767-6641 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/