REFERENCES

1. SMART. Servier Med Art. Available from: https://smart.servier.com/ [Last accessed on April 5, 2022].

2. Creative Commons - Attribution 3.0 Unported - CC BY 3.0. Available from: https://creativecommons.org/licenses/by/3.0/ [Last accessed on April 5, 2022].

3. Ashworth A. A case of cancer in which cells similar to those in the tumours were seen in the blood after death. Aust Med J 1869;14:146.

4. Paget S. The distribution of secondary growths in cancer of the breast. The Lancet 1889;133:571-3.

5. Mandel P, Metais P. Nuclear acids in human blood plasma. CR Seances Soc Biol Fil 1948;142:241-3.

6. Fidler IJ. Biological behavior of malignant melanoma cells correlated to their survival in vivo. Cancer Res 1975;35:218-24.

7. Leon SA, Shapiro B, Sklaroff DM, Yaros MJ. Free DNA in the serum of cancer patients and the effect of therapy. Cancer Res 1977;37:646-50.

8. Lo Y, Wainscoat J, Gillmer M, Patel P, Sampietro M, Fleming K. Prenatal sex determination by DNA amplification from maternal peripheral blood. The Lancet 1989;334:1363-5.

9. Reya T, Morrison SJ, Clarke MF, Weissman IL. Stem cells, cancer, and cancer stem cells. Nature 2001;414:105-11.

10. Balaña C, Ramirez JL, Taron M, et al. O6-methyl-guanine-DNA methyltransferase methylation in serum and tumor DNA predicts response to 1,3-bis(2-chloroethyl)-1-nitrosourea but not to temozolamide plus cisplatin in glioblastoma multiforme. Clin Cancer Res 2003;9:1461-8.

11. Allard WJ, Matera J, Miller MC, et al. Tumor cells circulate in the peripheral blood of all major carcinomas but not in healthy subjects or patients with nonmalignant diseases. Clin Cancer Res 2004;10:6897-904.

12. Cristofanilli M, Budd GT, Ellis MJ, et al. Circulating tumor cells, disease progression, and survival in metastatic breast cancer. N Engl J Med 2004;351:781-91.

13. Diehl F, Li M, Dressman D, et al. Detection and quantification of mutations in the plasma of patients with colorectal tumors. Proc Natl Acad Sci USA 2005;102:16368-73.

14. Maheswaran S, Sequist LV, Nagrath S, et al. Detection of mutations in EGFR in circulating lung-cancer cells. N Engl J Med 2008;359:366-77.

15. Diehl F, Schmidt K, Choti MA, et al. Circulating mutant DNA to assess tumor dynamics. Nat Med 2008;14:985-90.

16. Cohen SJ, Punt CJ, Iannotti N, et al. Relationship of circulating tumor cells to tumor response, progression-free survival, and overall survival in patients with metastatic colorectal cancer. J Clin Oncol 2008;26:3213-21.

17. de Bono JS, Scher HI, Montgomery RB, et al. Circulating tumor cells predict survival benefit from treatment in metastatic castration-resistant prostate cancer. Clin Cancer Res 2008;14:6302-9.

18. Pantel K, Alix-Panabières C. Circulating tumour cells in cancer patients: challenges and perspectives. Trends Mol Med 2010;16:398-406.

19. Calverley DC, Phang TL, Choudhury QG, et al. Significant downregulation of platelet gene expression in metastatic lung cancer. Clin Transl Sci 2010;3:227-32.

20. Dawson SJ, Tsui DW, Murtaza M, et al. Analysis of circulating tumor DNA to monitor metastatic breast cancer. N Engl J Med 2013;368:1199-209.

21. Bettegowda C, Sausen M, Leary RJ, et al. Detection of circulating tumor DNA in early- and late-stage human malignancies. Sci Transl Med 2014;6:224ra24.

22. Sullivan JP, Nahed BV, Madden MW, et al. Brain tumor cells in circulation are enriched for mesenchymal gene expression. Cancer Discov 2014;4:1299-309.

23. Mazel M, Jacot W, Pantel K, et al. Frequent expression of PD-L1 on circulating breast cancer cells. Mol Oncol 2015;9:1773-82.

24. Tie J, Wang Y, Tomasetti C, et al. Circulating tumor DNA analysis detects minimal residual disease and predicts recurrence in patients with stage II colon cancer. Sci Transl Med 2016;8:346ra92.

25. Donaldson J, Park BH. Circulating tumor DNA: measurement and clinical utility. Annu Rev Med 2018;69:223-34.

26. Cohen JD, Li L, Wang Y, et al. Detection and localization of surgically resectable cancers with a multi-analyte blood test. Science 2018;359:926-30.

27. Lennon AM, Buchanan AH, Kinde I, et al. Feasibility of blood testing combined with PET-CT to screen for cancer and guide intervention. Science 2020;369:eabb9601.

28. Romero D. Tracking cancer in liquid biopsies. Nat Res 2022.

29. Research C for DE and. cobas EGFR Mutation Test v2. FDA 2018.

30. Alix-Panabières C, Pantel K. Liquid biopsy: from discovery to clinical application. Cancer Discov 2021;11:858-73.

31. Eibl RH, Schneemann M. Liquid biopsy and primary brain tumors. Cancers (Basel) 2021;13:5429.

32. Feng D, Lv J, Li K, et al. CircZNF609 promotes bladder cancer progression and inhibits cisplatin sensitivity via miR-1200/CDC25B pathway. 2022.

33. Bardelli A, Pantel K. Liquid biopsies: what we do not know (yet). Cancer Cell 2017;31:172-9.

34. Louis DN, Perry A, Reifenberger G, et al. The 2016 World Health Organization classification of tumors of the central nervous system: a summary. Acta Neuropathol 2016;131:803-20.

35. Müller NL, Bergin CJ, Miller RR, Ostrow DN. Seeding of malignant cells into the needle track after lung and pleural biopsy. Can Assoc Radiol J 1986;37:192-4.

36. Joosse SA, Beyer B, Gasch C, et al. Tumor-associated release of prostatic cells into the blood after transrectal ultrasound-guided biopsy in patients with histologically confirmed prostate cancer. Clin Chem 2020;66:161-8.

37. Eslami-S Z, Cortés-Hernández LE, Cayrefourcq L, Alix-Panabières C. The different facets of liquid biopsy: a kaleidoscopic view. Cold Spring Harb Perspect Med 2020;10:a037333.

38. Kuske A, Gorges TM, Tennstedt P, et al. Improved detection of circulating tumor cells in non-metastatic high-risk prostate cancer patients. Sci Rep 2016;6:39736.

39. Ramirez JM, Fehm T, Orsini M, et al. Prognostic relevance of viable circulating tumor cells detected by EPISPOT in metastatic breast cancer patients. Clin Chem 2014;60:214-21.

40. Cayrefourcq L, De Roeck A, Garcia C, et al. S100-EPISPOT: a new tool to detect viable circulating melanoma cells. Cells 2019;8:755.

41. Mazard T, Cayrefourcq L, Perriard F, et al. Clinical relevance of viable circulating tumor cells in patients with metastatic colorectal cancer: the COLOSPOT prospective study. Cancers (Basel) 2021;13:2966.

42. Garrel R, Mazel M, Perriard F, et al. Circulating tumor cells as a prognostic factor in recurrent or metastatic head and neck squamous cell carcinoma: the CIRCUTEC prospective study. Clin Chem 2019;65:1267-75.

43. Denève E, Riethdorf S, Ramos J, et al. Capture of viable circulating tumor cells in the liver of colorectal cancer patients. Clin Chem 2013;59:1384-92.

44. Cayrefourcq L, Mazard T, Joosse S, et al. Establishment and characterization of a cell line from human circulating colon cancer cells. Cancer Res 2015;75:892-901.

45. Alix-Panabières C, Pantel K. Circulating tumor cells: liquid biopsy of cancer. Clin Chem 2013;59:110-8.

46. Koch C, Kuske A, Joosse SA, et al. Characterization of circulating breast cancer cells with tumorigenic and metastatic capacity. EMBO Mol Med 2020;12:e11908.

47. Neuberger EWI, Sontag S, Brahmer A, et al. Physical activity specifically evokes release of cell-free DNA from granulocytes thereby affecting liquid biopsy. Clin Epigenetics 2022;14:29.

48. Lo YMD, Han DSC, Jiang P, Chiu RWK. Epigenetics, fragmentomics, and topology of cell-free DNA in liquid biopsies. Science 2021;372:eaaw3616.

49. Kwapisz D. The first liquid biopsy test approved. Is it a new era of mutation testing for non-small cell lung cancer? Ann Transl Med 2017;5:46.

50. Misale S, Yaeger R, Hobor S, et al. Emergence of KRAS mutations and acquired resistance to anti-EGFR therapy in colorectal cancer. Nature 2012;486:532-6.

51. Diaz LA Jr, Williams RT, Wu J, et al. The molecular evolution of acquired resistance to targeted EGFR blockade in colorectal cancers. Nature 2012;486:537-40.

52. André F, Ciruelos E, Rubovszky G, et al. SOLAR-1 Study Group. Alpelisib for PIK3CA-mutated, hormone receptor-positive advanced breast cancer. N Engl J Med 2019;380:1929-40.

53. Preuss I, Eberhagen I, Haas S, et al. O6-methylguanine-DNA methyltransferase activity in breast and brain tumors. Int J Cancer 1995;61:321-6.

54. Preuss I, Haas S, Eichhorn U, et al. Activity of the DNA repair protein O6-methylguanine-DNA methyltransferase in human tumor and corresponding normal tissue. Cancer Detect Prev 1996;20:130-6.

55. Song CX, Yin S, Ma L, et al. 5-Hydroxymethylcytosine signatures in cell-free DNA provide information about tumor types and stages. Cell Res 2017;27:1231-42.

56. Heitzer E, Haque IS, Roberts CES, Speicher MR. Current and future perspectives of liquid biopsies in genomics-driven oncology. Nat Rev Genet 2019;20:71-88.

57. Ignatiadis M, Sledge GW, Jeffrey SS. Liquid biopsy enters the clinic - implementation issues and future challenges. Nat Rev Clin Oncol 2021;18:297-312.

58. Jiang P, Chan CW, Chan KC, et al. Lengthening and shortening of plasma DNA in hepatocellular carcinoma patients. Proc Natl Acad Sci USA 2015;112:E1317-25.

59. Serpas L, Chan RWY, Jiang P, et al. Dnase1l3 deletion causes aberrations in length and end-motif frequencies in plasma DNA. Proc Natl Acad Sci USA 2019;116:641-9.

60. Jiang P, Sun K, Peng W, et al. Plasma DNA end-motif profiling as a fragmentomic marker in cancer, pregnancy, and transplantation. Cancer Discov 2020;10:664-73.

61. Kitano Y, Aoki K, Ohka F, et al. Urinary microRNA-based diagnostic model for central nervous system tumors using nanowire scaffolds. ACS Appl Mater Interfaces 2021;13:17316-29.

62. Chen WW, Balaj L, Liau LM, et al. BEAMing and droplet digital PCR analysis of mutant IDH1 mRNA in glioma patient serum and cerebrospinal fluid extracellular vesicles. Mol Ther Nucleic Acids 2013;2:e109.

63. Best MG, Sol N, Kooi I, et al. RNA-Seq of tumor-educated platelets enables blood-based pan-cancer, multiclass, and molecular pathway cancer diagnostics. Cancer Cell 2015;28:666-76.

64. Best MG, Wesseling P, Wurdinger T. Tumor-educated platelets as a noninvasive biomarker source for cancer detection and progression monitoring. Cancer Res 2018;78:3407-12.

65. Home - ClinicalTrials. gov. Available from: https://www.clinicaltrials.gov/ [Last accessed on 27 Jul 2022].

66. Garcia-Murillas I, Schiavon G, Weigelt B, et al. Mutation tracking in circulating tumor DNA predicts relapse in early breast cancer. Sci Transl Med 2015;7:302ra133.

67. Olsson E, Winter C, George A, et al. Serial monitoring of circulating tumor DNA in patients with primary breast cancer for detection of occult metastatic disease. EMBO Mol Med 2015;7:1034-47.

68. Phallen J, Sausen M, Adleff V, et al. Direct detection of early-stage cancers using circulating tumor DNA. Sci Transl Med 2017;9:eaan2415.

69. Abbosh C, Birkbak NJ, Wilson GA, et al. The TRACERx consortium; The PEACE consortium. Phylogenetic ctDNA analysis depicts early-stage lung cancer evolution. Nature 2017;545:446-51.

70. Ng SB, Chua C, Ng M, et al. Individualised multiplexed circulating tumour DNA assays for monitoring of tumour presence in patients after colorectal cancer surgery. Sci Rep 2017;7:40737.

71. Schøler LV, Reinert T, Ørntoft MW, et al. Clinical implications of monitoring circulating tumor DNA in patients with colorectal cancer. Clin Cancer Res 2017;23:5437-45.

72. Chaudhuri AA, Chabon JJ, Lovejoy AF, et al. Early detection of molecular residual disease in localized lung cancer by circulating tumor DNA profiling. Cancer Discov 2017;7:1394-403.

73. Mehra N, Dolling D, Sumanasuriya S, et al. Plasma cell-free DNA concentration and outcomes from taxane therapy in metastatic castration-resistant prostate cancer from two phase III trials (FIRSTANA and PROSELICA). European Urology 2018;74:283-91.

74. Annala M, Vandekerkhove G, Khalaf D, et al. Circulating tumor DNA genomics correlate with resistance to abiraterone and enzalutamide in prostate cancer. Cancer Discov 2018;8:444-57.

75. Coombes RC, Page K, Salari R, et al. Personalized detection of circulating tumor DNA antedates breast cancer metastatic recurrence. Clin Cancer Res 2019;25:4255-63.

76. Garcia-Murillas I, Chopra N, Comino-Méndez I, et al. Assessment of molecular relapse detection in early-stage breast cancer. JAMA Oncol 2019;5:1473-8.

77. Moding EJ, Liu Y, Nabet BY, et al. Circulating tumor DNA dynamics predict benefit from consolidation immunotherapy in locally advanced non-small cell lung cancer. Nat Cancer 2020;1:176-83.

78. McDuff SGR, Hardiman KM, Ulintz PJ, et al. Circulating tumor DNA predicts pathologic and clinical outcomes following neoadjuvant chemoradiation and surgery for patients with locally advanced rectal cancer. JCO Precis Oncol 2021;5:PO.

79. Taniguchi H, Nakamura Y, Kotani D, et al. CIRCULATE-Japan: circulating tumor DNA-guided adaptive platform trials to refine adjuvant therapy for colorectal cancer. Cancer Sci 2021;112:2915-20.

80. Gale D, Heider K, Ruiz-Valdepenas A, et al. Residual ctDNA after treatment predicts early relapse in patients with early-stage non-small cell lung cancer. Ann Oncol 2022;33:500-10.

81. Tie J, Cohen JD, Lahouel K, et al. DYNAMIC Investigators. Circulating tumor DNA analysis guiding adjuvant therapy in stage II colon cancer. N Engl J Med 2022;386:2261-72.

82. Ohgaki H, Eibl RH, Wiestler OD, Yasargil MG, Newcomb EW, Kleihues P. p53 mutations in nonastrocytic human brain tumors. Cancer Res 1991;51:6202-5.

83. Zhukova N, Ramaswamy V, Remke M, et al. Subgroup-specific prognostic implications of TP53 mutation in medulloblastoma. J Clin Oncol 2013;31:2927-35.

84. Riva F, Bidard FC, Houy A, et al. Patient-specific circulating tumor DNA detection during neoadjuvant chemotherapy in triple-negative breast cancer. Clin Chem 2017;63:691-9.

85. Radovich M, Jiang G, Hancock BA, et al. Association of circulating tumor DNA and circulating tumor cells after neoadjuvant chemotherapy with disease recurrence in patients with triple-negative breast cancer: preplanned secondary analysis of the BRE12-158 randomized clinical trial. JAMA Oncol 2020;6:1410-5.

86. MD BS. A Phase II Randomized controlled trial of genomically directed therapy after preoperative chemotherapy in patients with triple negative breast cancer: hoosier oncology group BRE12-158. clinicaltrials.gov 2020. Available from: https://clinicaltrials.gov/ct2/show/NCT02101385 [Last accessed on 2 Aug 2022]

87. University College, London. The SUMMIT study: cancer screening study with or without low dose lung CT to validate a multi-cancer early detection test. clinicaltrials.gov; 2021. Available from: https://www.clinicaltrials.gov/ct2/show/NCT03934866 [Last accessed on 28 Jul 2022].

88. Technische Universität Dresden. Circulating Tumour DNA Based Decision for Adjuvant Treatment in Colon Cancer Stage II Evaluation (CIRCULATE) AIO-KRK-0217. clinicaltrials.gov; 2020. Available from: https://clinicaltrials.gov/ct2/show/NCT04089631 [Last accessed on 2 Aug 2022].

89. Hospices Civils de Lyon. The circTeloDIAG: a new approach of liquid biopsy for the diagnosis and follow-up of patients with glioma tumor. clinicaltrials.gov; 2021. Available from: https://clinicaltrials.gov/ct2/show/NCT04931732 [Last accessed on 2 Aug 2022]

90. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2018;68:394-424.

91. Hennigan ST, Trostel SY, Terrigino NT, et al. Low abundance of circulating tumor DNA in localized prostate cancer. JCO Precis Oncol 2019;3:PO.19.00176.

92. Lavon I, Refael M, Zelikovitch B, Shalom E, Siegal T. Serum DNA can define tumor-specific genetic and epigenetic markers in gliomas of various grades. Neuro Oncol 2010;12:173-80.

93. Majchrzak-Celińska A, Paluszczak J, Kleszcz R, et al. Detection of MGMT, RASSF1A, p15INK4B, and p14ARF promoter methylation in circulating tumor-derived DNA of central nervous system cancer patients. J Appl Genet 2013;54:335-44.

94. Boisselier B, Gállego Pérez-Larraya J, Rossetto M, et al. Detection of IDH1 mutation in the plasma of patients with glioma. Neurology 2012;79:1693-8.

95. Schwaederle M, Chattopadhyay R, Kato S, et al. Genomic alterations in circulating tumor DNA from diverse cancer patients identified by next-generation sequencing. Cancer Res 2017;77:5419-27.

96. Weaver KD, Grossman SA, Herman JG. Methylated tumor-specific DNA as a plasma biomarker in patients with glioma. Cancer Invest 2006;24:35-40.

97. Eibl RH, Wiestler OD. Induction of primitive neuroectodermal tumors following retrovirus-mediated transfer of SV40 large T antigen into neural transplants. Zülch symposium on growth control and neoplastic transformation in the brain. Goslar, Germany. Rockledge, U.S.A.: Dustri; 1991. pp. 248–9.

98. Eibl RH, Kleihues P, Jat PS, Wiestler OD. A model for primitive neuroectodermal tumors in transgenic neural transplants harboring the SV40 large T antigen. Am J Pathol 1994;144:556-64.

99. Saylors RL, Sidransky D, Friedman HS, et al. Infrequent p53 gene mutations in medulloblastomas. Cancer Res 1991;51:4721-3.

100. Kleihues P, Ohgaki H, Eibl RH, et al. Type and frequency of p53 mutations in tumors of the nervous system and its coverings. Recent Results Cancer Res 1994;135:25-31.

101. Louis DN, von Deimling A, Chung RY, et al. Comparative study of p53 gene and protein alterations in human astrocytic tumors. J Neuropathol Exp Neurol 1993;52:31-8.

102. Ohgaki H, Eibl RH, Schwab M, et al. Mutations of the p53 tumor suppressor gene in neoplasms of the human nervous system. Mol Carcinog 1993;8:74-80.

103. von Deimling A, Eibl RH, Ohgaki H, et al. p53 mutations are associated with 17p allelic loss in grade II and grade III astrocytoma. Cancer Res 1992;52:2987-90.

104. Wiestler OD, Brüstle O, Eibl RH, Radner H, Aguzzi A, Kleihues P. Retrovirus-mediated oncogene transfer into neural transplants. Brain Pathol 1992;2:47-59.

105. Wiestler OD, Brüstle O, Eibl RH, et al. A new approach to the molecular basis of neoplastic transformation in the brain. Neuropathol Appl Neurobiol 1992;18:443-53.

106. Wiestler OD, Brüstle O, Eibl RH, Radner H, Aguzzi A, Kleihues P. Oncogene transfer into the brain. Molecular Neuro-oncology and Its Impact on the Clinical Management of Brain Tumors 1994:5-66.

107. Wiestler OD, Aguzzi A, Brüstle O, Eibl R, Radner H, Kleihues P. Oncogene complementation in transgenic neural transplants. Neuropathology 1990;4:304-9.

108. Louis DN, Perry A, Wesseling P, et al. The 2021 WHO classification of tumors of the central nervous system: a summary. Neuro Oncol 2021;23:1231-51.

109. Eibl RH, Schneemann M. Liquid biopsy for monitoring medulloblastoma. Extracell Vesicles Circ Nucleic Acids 2022;3:263-74.

110. Martínez-Ricarte F, Mayor R, Martínez-Sáez E, et al. Molecular diagnosis of diffuse gliomas through sequencing of cell-free circulating tumor DNA from cerebrospinal fluid. Clin Cancer Res 2018;24:2812-9.

111. Miller AM, Shah RH, Pentsova EI, et al. Tracking tumour evolution in glioma through liquid biopsies of cerebrospinal fluid. Nature 2019;565:654-8.

112. Mouliere F, Mair R, Chandrananda D, et al. Detection of cell-free DNA fragmentation and copy number alterations in cerebrospinal fluid from glioma patients. EMBO Mol Med 2018;10:e9323.

113. Pan Y, Long W, Liu Q. Current advances and future perspectives of cerebrospinal fluid biopsy in midline brain malignancies. Curr Treat Options Oncol 2019;20:88.

114. Wang Y, Springer S, Zhang M, et al. Detection of tumor-derived DNA in cerebrospinal fluid of patients with primary tumors of the brain and spinal cord. Proc Natl Acad Sci USA 2015;112:9704-9.

115. De Mattos-Arruda L, Mayor R, Ng CKY, et al. Cerebrospinal fluid-derived circulating tumour DNA better represents the genomic alterations of brain tumours than plasma. Nat Commun 2015;6:8839.

116. Guler GD, Ning Y, Ku CJ, et al. Detection of early stage pancreatic cancer using 5-hydroxymethylcytosine signatures in circulating cell free DNA. Nat Commun 2020;11:5270.

117. Haan D, Bergamaschi A, Guler GD, et al. Validation of a pancreatic cancer detection test in new-onset diabetes using cell-free DNA 5-Hydroxymethylation signatures, 2021. Available from: https://www.medrxiv.org/content/10.1101/2021.12.27.21268450v1 [Last accessed on 27 Jul 2022].

118. Bluestar Genomics. Liquid biopsy cancer detection. BlueStar Genomics. Available from: https://www.bluestargenomics.com/ [Last accessed on 27 Jul 2022].

119. The first blood test for colon cancer screening and prevention. Available from: https://cellmaxlife.in/ [Last accessed on 29 Jul 2022].

120. Home. Circulogene. Available from: https://circulogene.com/ [Last accessed on 27 Jul 2022].

121. Home. Exact Sciences. Available from: https://www.exactsciences.com/ [Last accessed on 27 Jul 2022].

122. Foundation Medicine. A World-leading Molecular Insights Company. Available from: https://www.foundationmedicine.com/ [Last accessed on 27 Jul 2022].

123. Kim ST, Banks KC, Lee SH, et al. Prospective feasibility study for using cell-free circulating tumor DNA-guided therapy in refractory metastatic solid cancers: an interim analysis. JCO Precis Oncol 2017;1:PO.16.00059.

124. Liquid Biopsy For All Advanced Solid Tumors. Guardant360® CDx. Available from: https://guardant360cdx.com/ [Last accessed on 27 Jul 2022].

125. Zheng Z, Liebers M, Zhelyazkova B, et al. Anchored multiplex PCR for targeted next-generation sequencing. Nat Med 2014;20:1479-84.

126. Democratizing precision oncology. ArcherDX. Available from: https://archerdx.com/ [Last accessed on 27 Jul 2022].

127. So MK, Park JH, Kim JW, Jang JH. Analytical validation of a pan-cancer panel for cell-free assay for the detection of. EGFR 2021;11:1022.

128. Scientific TF. Oncomine next-generation sequencing solutions for precision oncology research. Available from: https://www.oncomine.com [Last accessed on 27 Jul 2022].

129. Welcome to Inivata. A Leader in Liquid Biopsy. Cancer Care Treatment. Available from: https://www.inivata.com/ [Last accessed on 27 Jul 2022].

130. Natera: A global leader in cfDNA testing. Natera. Available from: https://www.natera.com/ [Last accessed on 27 Jul 2022].

131. Biocept – Advancing Diagnostics to Improve Cancer Treatments. Available from: https://biocept.com/ [Last accessed on 27 Jul 2022].

132. van der Leest P, Ketelaar EM, van Noesel CJM, et al. Dutch national round robin trial on plasma-derived circulating cell-free DNA extraction methods routinely used in clinical pathology for molecular tumor profiling. Clin Chem 2022;68:963-72.

133. Eibl RH, Pietsch T, Moll J, et al. Expression of variant CD44 epitopes in human astrocytic brain tumors. J Neurooncol 1995;26:165-70.

134. Home. Australian Clinical Trials. Available from: https://www.australianclinicaltrials.gov.au/ [Last accessed on 27 Jul 2022].

135. Pax M, Rieger J, Eibl RH, Thielemann C, Johannsmann D. Measurements of fast fluctuations of viscoelastic properties with the quartz crystal microbalance. Analyst 2005;130:1474-7.

136. Eibl RH, Benoit M. Molecular resolution of cell adhesion forces. IEE Proc Nanobiotechnol 2004;151:128-32.

137. Eibl RH, Moy VT. AFM-based adhesion measurements of single receptor-ligand bonds on living cells. In: Pandalai SG, editor. Recent research developments in biophysics. Trivandrum: Transworld Research Network; 2004:235–46. Available from: https://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17751719 [Last accessed on 27 Jul 2022].

138. Eibl RH, Moy VT. Atomic force microscopy measurements of protein–ligand interactions on living cells. Methods Mol Biol 2005;305:439-50.

139. Eibl RH. Direct force measurements of receptor–ligand interactions on living cells. In: Bhushan B, Fuchs H, editors. Applied Scanning Probe Methods XII: Characterization. Berlin, Heidelberg: Springer; 2009. pp. 1-31.

140. Eibl RH. Cell adhesion receptors studied by AFM-Based single-molecule force spectroscopy. In: Bhushan B, editor. Scanning Probe Microscopy in Nanoscience and Nanotechnology 2. Berlin, Heidelberg: Springer; 2011. pp. 197-215.

141. Eibl RH. Single-molecule studies of integrins by AFM-based force spectroscopy on living cells. In: Bhushan B, editor. Scanning Probe Microscopy in Nanoscience and Nanotechnology 3. Berlin, Heidelberg: Springer; 2013. pp. 137–69.

142. Eibl RH. Comment on "A method to measure cellular adhesion utilizing a polymer micro-cantilever". Appl Phys Lett 2014;104:236103.

143. Eibl RH, Moy VT. Atomic force microscopy measurements of protein-ligand interactions on living cells. In: Ulrich Nienhaus G, editor. Protein-Ligand Interactions: Methods and Applications. Totowa, NJ: Humana Press; 2005. pp. 439-49.

144. Eibl RH. First measurement of physiologic VLA-4 activation by SDF-1 at the single-molecule level on a living cell. In: Hinterdorfer P, Schütz G, Pohl P, editors. Proceedings of the VIII. Linz Winter Workshop 2006: Advances in Single Molecule Research for Biology and Nanoscience. Linz: Trauner; 2006. pp. 40-3.

145. Gonzalez-Beltran AN, Masuzzo P, Ampe C, et al. Community standards for open cell migration data. Gigascience 2020;9:giaa041.

146. Wiestler OD, Aguzzi A, Schneemann M, Eibl R, von Deimling A, Kleihues P. Oncogene complementation in fetal brain transplants. Cancer Res 1992;52:3760-7.

147. Radner H, el-Shabrawi Y, Eibl RH, et al. Tumor induction by ras and myc oncogenes in fetal and neonatal brain: modulating effects of developmental stage and retroviral dose. Acta Neuropathol 1993;86:456-65.

148. Rack B, Schindlbeck C, Jückstock J, et al. SUCCESS Study Group. Circulating tumor cells predict survival in early average-to-high risk breast cancer patients. J Natl Cancer Inst 2014;106:dju066.

Extracellular Vesicles and Circulating Nucleic Acids
ISSN 2767-6641 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/